Direct products/sums: when the associated morphisms are epi/mono

Exercise 7 (Chapter 2, “Categories”): In the category of sets, the two morphisms ( and ) in a direct product are monomorphisms and the two morphisms in a direct sum are epimorphisms. Is this true in every category? There are two mistakes in this wording. The author has exchanged “monomorphisms” and “epimorphisms”. In a direct…

Read more...

“Free Object Functors”

Chapter 12 (Functors) gives as an example of a functor the “free group functor” from the category of sets () to the category of groups (). We will call this functor , and its construction, as described, is the following: For any set , the object is the free group on . Let be a…

Read more...

Functors Between Real and Complex Vector Spaces

(Unfinished) In Chapter 12, R.G. describes three possible transformations “from real to complex vector spaces and back”. Inspired by Chapter 17 (Functors), I have examined these transformations from the functor point of view. We can distinguish not two, but three categories here, the first and third of which are equivalent: : Complex vector spaces with…

Read more...